

OPEN. FOR BUSINESS.

Using SmartNICs to Reduce Server Latency

Nic Viljoen, Director-Software Engineering, Netronome nick.viljoen@netronome.com

Sections

- Intro
 - Netronome and OCP
 - What's a SmartNIC?
- Why is Latency a problem?
- How can SmartNICs Help?
 - Single-Host
 - Multi-Host
- Summary

Netronome and OCP

- First 25/50G SmartNIC on OCP Mezz v2
 - Fully programmable-72 cores, 8 threads per core
- 15-25W (Depending on use case)
- Contributing to OCP Mezz v3
 - Jack Dawson
 - john.dawson@netronome.com

SoC Architecture

NETRONUME

High Performance Interconnect – DSF

Modular Island based architecture

Scalable with process node

Capability to add/ remove islands based on customer requirements

Low latency deterministic paths between islands

© 2018 NETRONOME SYSTEMS, INC.

Transactional Memory Architecture

Latency hidden by co-operative multi-threading

1. Why is Latency a Problem?

© 2018 NETRONOME SYSTEMS, INC.

- Focus of this talk is TCP (and a small bit of UDP)-nothing fancy
- Latency affects
 - Throughput
 - Remote procedure call reliability
 - Network hygiene
- Simple but useful tool
 - https://wand.net.nz/~perry/max_download.php

Window size, losses and latency (TCP 101)

- Going from 1ms to 0.05ms increases throughput by about ~20x
 - Window size-why does it really matter?
- Any losses will accentuate this
- Reducing latency increases robustness

- Web users leave websites if interactions have too much latency
- This is decreasing with the advent of VR/AR
- Tail latency is key
 - 1/100 workers exceeds P99 latency budget for process

2. How Can SmartNICs Help?

1

Processing on the NIC

- Processing certain types of packets on the NIC significantly reduces latency
- Want to be able to run own applications
- Don't want to leave upstream (Linux)
- How can custom datapath offload be achieved while staying within upstream?
 - eBPF

- Small kernel-based virtual machine
 - 10 64-bit registers
 - 512 byte stack
 - Max 4k RISC bytecode instructions
 - Infinite size key-value stores (maps)
- BPF has a verifier to ensure programs do not contain non-permitted state
- Helpers do essential work outside of BPF (e.g map lookups, header extend)

eBPF Offload

•What is eBPF?

- Small kernel-based virtual machine
- Compiled from C/Go/Rust/P4 by LLVM
- Verified and JITed by kernel

Why eBPF?

- Emerging technology in kernel
- Used by Facebook, Cloudflare, many others
- BPFilter is key new firewall method

•eBPF Offload

- Transparently offload XDP and cls_bpf (TC)
- Means NFP can immediately offload new kernel innovations

Note: Netronome not affected by Spectre/Meltdown bugs

© 2018 NETRONOME SYSTEMS, INC.

Ping Latency Example

Ping Latency + Filter (Multi-host)

Latency (Multi-host)

Summary-How does this help ocp?

- The crossing point between HW and software is hard
- But the rewards can be very interesting
- How can NIC level programmability become more tightly entwined with OCP?

Load Balancer Throughput

Sample Load Balancer

NFP can viably offload applications in XDP-and lots of performance headroom

