





# Facebook Flexible GPU Expander Big Basin Refresh

Whitney Zhao/HW Eng/Facebook Inc.
Xiaodong Wang/SW Eng/Facebook Inc.





Introduction

Architecture

Performance

Questions

Agenda

Introduction

Architecture

Performance

Questions

Agenda

#### **Impact**

Facebook's commitment to developing AI & advancing ML



#### Goal

- Open, full contribution to OCP
- Disaggregation/Modularity
- Serviceability



2016: Big Sur



2017: Leopard + Big Basin 2018: Tioga Pass + Big Basin V2

## Big Basin V2 Overview

- 3 OU chassis
- Open Rack v2 compatible
- 8x Nvidia Tesla V100 GPUs; NVLink capable
- 300W TDP for each Tesla V100 GPU
- Facebook 2S Server Tioga Pass as Head node



# A deeper look into Big Basin







Baseboard on sliding tray

#### Serviceability

- Quick repairs at data center
- Telemetries accessible from head node
- Provisioning Big Basin with its head node is not much different from provisioning existing servers; these servers come with additional GPUs.







Introduction

Architecture

Performance

Questions

Agenda

#### Architecture (Headnode to Big Basin)

- MiniSAS HD cable(2 for each x16)
- Standard PCle x16
- Present Pin
- o USB2.0

O IPMB/I2C

Leopard + Big Basin(Tesla P100)



Tioga Pass + Big Basin V2(Tesla V100)

#### Architecture (PCIe)

#### Leopard + Big Basin



#### Tioga Pass + Big Basin V2



#### Architecture (NVLINK)





Big Basin W/Nvidia Tesla P100



Big Basin V2 W/ Nvidia Tesla V100

# Architecture (IPMB/I2C/PMBUS)



Introduction

Architecture

Performance

Questions

Agenda

#### Performance

- Hardware Spec Improvement
- Application performance
  - Computer vision
    - Single-GPU
    - Multi-GPU scalability
    - TensorCore
  - Neural machine translation

#### Performance

Comparisons of GPU Hardware

|             | Metrics       | NVIDIA V100 | NVIIDA P100 | Improvement |
|-------------|---------------|-------------|-------------|-------------|
| Performance | FP-32         | 15 TFLOPS   | 10.6 TFLOPS | 1.42x       |
|             | FP-16         | 30 TFLOPS   | 21.2 TFLOPS |             |
|             | TensorCore    | 125 TFLOPS  | NA          | Up to 5x    |
|             | Mem Bandwidth | 900 GB/s    | 720 GB/s    | 1.25x       |
|             | NVLink        | 300 GB/s    | 160 GB/s    | 1.88x       |
| Power       |               | 300 W       | 300 W       |             |

#### Performance

- Comparisons of GPU Hardware
- Head-node upgrade: Tioga Pass
  - New CPU architecture: Broadwell to Skylake
  - Double PCle bandwidth
  - Upgraded 100G NIC
- CUDA 9 + cudnn 7: faster libraries, etc.

# Impact - Computer Vision



#### Performance metrics in Computer Vision

- Computer Vision: resnet-50
  - -1-GPU training speed: use P100 + CUDA 8 as baseline



# Computer Vision Performance

- Computer Vision
  - -Multi-GPU speedup vs. 1 P100



# Computer Vision Performance

- Computer Vision
  - -High-bandwidth FP-16 TensorCore (WIP)



#### **Machine Translation**

#### **Better Translation Quality**







Neural network approach

#### Machine Translation Performance

Neural Machine translation

P100 + CUDA 8
Training
Throughput as
Baseline

V100 + CUDA 8
1.45X

V100 + CUDA 9
2.2X

# THIS JOURNEY 1% FINISHED

# **Questions?**

# **OCP Marketplace**

http://www.opencompute.org/products/specsanddesign?keyword=Big+basin



