
© Finisar Corporation 1

March 21, 2018

Don Bollinger

Managing Optics Using Open Standard Software

AKA:  The OCP Networking OOM project



© Finisar Corporation 2

Topics

 OOM is alive and well

 You need a better optical EEPROM driver

 optoe driver is shipping now



© Finisar Corporation 3

Traditional Network Vendors Fully Exploit the Optical Data

Network OS

Switch Silicon

Installer
(eg ONIE)

Forwarding SW
(Traditional, Distributed, 
eg OSPF, BGP, STP etc)

Forwarding SW
(Centralized, eg OpenFlow)

Monitoring
Config &

Automate
QoS Security Other

Switch Abstraction Interface (SAI)

APPLICATIONS

Optics vendors

OEM Model

(Vertically Integrated)

Ethernet Switch 

Vendors 

(Cisco, Juniper, 

Arista...)

Switch Vendors 

built all the 

plumbing to get 

optical data to the 

end user



© Finisar Corporation 4

Optics vendors

Open Networking: The Data is getting lost in the “flexibility”

Key Messages

Network OS

Switch Silicon

Installer
(eg ONIE)

Forwarding SW
(Traditional, Distributed, 
eg OSPF, BGP, STP etc)

Forwarding SW
(Centralized, eg OpenFlow)

Monitoring
Config &

Automate
QoS Security Other

Switch Abstraction Interface (SAI)

APPLICATIONS Open Switch, 

Bare Metal Model

100s of 3rd

Party Apps

Many 3rd Party 
& Open-source

Applications

NOS Vendors

Switch Silicon Vendors

OEM/ODM White Box 

Vendors

Each switch, each 

NOS has a 

different way to 

access optical 

data

Management 

Apps have to be 

written to a 

specific switch 

and NOS combo



© Finisar Corporation 5

Managing Optical Devices in Network Management Tools

Network OS
(Kernel)

i2c (HW)

OOM Decode Library

Network OS (including apps)

Switch

OOM Optoe Driver

OOM JSON Server

Your Management Tool Here!

Monitor & Control Data



© Finisar Corporation 6

What is the Open Optical Monitoring (OOM) decode library?

OOM is a Python package, providing a standard API to 

read/write optical transceiver modules.

• EEPROM data encoded/decoded in key/value pairs.

Same API: Any Linux-based NOS, any switch, any module 

vendor, any module type.

Open Source, easy to maintain, easy to extend.

Key Messages

 Message 1

 Message 2

 Message 3

 Message 1

 Message 2

 Message 3

from oom import *
for port in oom_get_portlist(): # enumerate the ports on the switch

status = oom_get_memory(port, 'DOM')  # DOM = voltage, temp, {TX, Rx}Power, bias
print port.port_name + str(status)

port0{'VCC': 3.30, 'TEMP': 23.55, 'TX_POWER': 0.57, 'RX_POWER': 0.56, 'TX_BIAS': 7.4}
port1{'VCC': 3.31, 'TEMP': 24.02, 'TX_POWER': 0.57, 'RX_POWER': 0.53, 'TX_BIAS': 7.3}



© Finisar Corporation 7

OOM HAS A PROBLEM!!!

OOM works great…

IF IT CAN READ AND WRITE THE EEPROM

Key Messages

 Message 1

 Message 2

 Message 3

 Message 1

 Message 2

 Message 3



© Finisar Corporation 8

Transceiver EEPROM Layout

QSFP-DD Management Draft Spec Rev 0.61

SFP

2nd

ROM 

Space

00h

FFh



© Finisar Corporation 9

at24.c – the Linux upstream EEPROM driver

QSFP-DD Management Draft Spec Rev 0.61

Not Available with MOST driverS

SFP

2nd

ROM 

Space

00h

FFh



© Finisar Corporation 10

at24.c – the Linux upstream EEPROM driver

QSFP-DD Management Draft Spec Rev 0.61

ONLY with OPTOE*

* Bank pages coming when standardized

SFP

2nd

ROM 

Space

00h

FFh



© Finisar Corporation 11

What optics features require optoe driver?

 QSFP alarm/warning thresholds - page 3

 Some capabilities require write capability

 Software TX_Disable

 Proprietary features use both

 Future features need to reach page 0x30

 QSFP-DD (8 channels) puts most per-

channel data in pages 0x10-0x1F 



© Finisar Corporation 12

Some observations

 at24 driver – no paging, no writes

 Widely used for SFP access

 sff8436 supports paging

 Max 256 (or 512) bytes on SFP devices

 In use for SFP by some NOSs

 Only 4 QSFP pages supported

 Proprietary drivers – no paging, no writes

 Used for both SFP and QSFP

 How well does your driver work?

 Send me a pointer, I’ll check it



© Finisar Corporation 13

optoe attributes

 Technical
 Read & Write

 Multiple I2C addresses (for SFP)

 Multiple Pages, up to the architected limit (256 pages, >32KB)

 No internal read/write buffer (256 pages: >32K of EEPROM data)

 Logistical
 All flavors of SFP, QSFP, QSFP-DD/OSFP

 Platform independent, NOS independent
• Available today on ONL and SONIC for Accton, Inventec and Quanta

switches

 Next Step: Linux upstream

 Available at: https://github.com/opencomputeproject/oom

https://github.com/opencomputeproject/oom


© Finisar Corporation 14

Managing Optical Devices in Network Management Tools

Network OS
(Kernel)

i2c (HW)

OOM Decode Library

Network OS (including apps)

Switch

OOM Optoe Driver

OOM JSON Server

Your Management Tool Here!

Monitor & Control Data



© Finisar Corporation 15

Backup

 Old slides, previous versions, noise…



© Finisar Corporation 16

Optics vendors

Finisar is Driving a Common Solution for Open Networking

Key Messages

Network OS

Switch Silicon

Installer
(eg ONIE)

Forwarding SW
(Traditional, Distributed, 
eg OSPF, BGP, STP etc)

Forwarding SW
(Centralized, eg OpenFlow)

Monitoring
Config &

Automate
QoS Security Other

Switch Abstraction Interface (SAI)

APPLICATIONS Open Switch, 

Bare Metal Model

100s of 3rd

Party Apps

Many 3rd Party 
& Open-source

Applications

NOS Vendors

Switch Silicon Vendors

OEM/ODM White Box 

Vendors

One driver to 

standardize and 

upgrade access to 

optical data

One API (OOM) to 

access and 

decode optical 

data

OOM Demo



© Finisar Corporation 17

SFF_8436 technical details (vs Sonic 4.9 candidate)

 Supports paging on QSFP, but only 4 pages (optoe: 256 pages)

 Does not page on SFP devices (512 bytes max) (optoe: 256 pages)

 Separate code for read/write and register read/write

 Same i2c calls implemented twice, harder to maintain (optoe combines them)

 Separate code for SFP and QSFP

 SFP paging logic should be same as QSFP (after dealing with 2nd I2C addr)

 optoe combines i2c addr and paging, for SFP and QSFP, into one translate routine

 All reads/writes go through an internal buffer, sized to match the total 
addressable space of the EEPROM

 640 bytes for QSFP, 512 bytes for SFP, times 54 devices (no big deal)

 More pages means a bigger buffer - >32K for the architected limit

 1.7 M of buffer space for 54 devices

 memset(sff_8436->data, 0xff, SFF_8436_EEPROM_SIZE) – on every read and write!

 optoe reads/writes directly to the user buffer, faster and smaller



© Finisar Corporation 18

(more) SFF_8436 technical details (vs Sonic 4.9 candidate)

 Sff_8436 doesn’t support sfp_dwdm (type: 0xB), will treat it as QSFP, 
trying to use just one i2c addr, and page from that addr.  (optoe does 
not query device for type, therefore supports everything)

 Sff_8436 bug:  Reads that span i2c addresses (SFP) wrap back to 
the beginning of the address (optoe fixed this bug)

 Optoe supports QSFP-DD unchanged (needs testing)

 optoe builds on Linux 3.2, 4.1, 4.9, 4.15 (latest staging branch)

 Previous version of optoe submitted by 3 vendors to 2 NOSs

 optoe passes checkpatch.pl

 optoe is ready to submit to Linux upstream kernel

 sff_8436 uses ‘sfp_compat’, optoe uses ‘dev_class’, works the same



© Finisar Corporation 19

Requirements for an Optical EEPROM Driver

 MUST

 Read & Write

 Multiple I2C addresses (for SFP)

 Multiple Pages, up to the architected limit (256 pages, >32KB)

 High Priority

 No internal read/write buffer (256 pages: >32K of EEPROM data)

 One driver for all flavors of both SFP and QSFP 

 One driver for all platforms 

Note, we have a driver that meets these requirements

https://github.com/opencomputeproject/oom

https://github.com/opencomputeproject/oom


© Finisar Corporation 20

Optoe details

 Exposes the EEPROM data in a bin_attribute file ‘eeprom’

 Size is 32K+ bytes

 Maintains a port name for each device, in an attribute file ‘port_name’

 Initially ‘unitialized’, write the desired name to set it

 Supports two device identifiers

 optoe1 for devices with one i2c address (QSFP).  (sff8436 also works)

 optoe2 for devices with two i2c addresses (SFP). (24c04 also works)

 Build as a module, add via new_device, or via other i2c mechanisms



© Finisar Corporation 21

optoe driver

 Supports both SFP and QSFP

 256 pages supported on both

 Read and Write

 Available on OOM github site:

https://github.com/opencomputeproject/oom

 Tested on Sonic, Cumulus, ONL

 Tested on Accton, Inventec switches 

https://github.com/opencomputeproject/oom


© Finisar Corporation 22

Example setup

 QSFP+
 echo optoe1 0x50 > /sys/bus/i2c/devices/i2c-64/new_device

 echo port54 > /sys/bus/i2c/devices/i2c-64/port_name

 more /sys/bus/i2c/devices/i2c-64/port_name
• port54

 od –c –j148 –N16 /sys/bus/i2c/devices/i2c-64/eeprom
• 0000224   F   I   N   I   S   A   R       C   O   R   P

 SFP
 echo optoe2 0x50 > /sys/bus/i2c/devices/i2c-11/new_device

 echo port1 > /sys/bus/i2c/devices/i2c-11/port_name

 more /sys/bus/i2c/devices/i2c-64/port_name
• port1

 od –c –j20 –N16 /sys/bus/i2c/devices/i2c-11/eeprom
• 0000224   F   I   N   I   S   A   R       C   O   R   P



© Finisar Corporation 23

Other design decisions taken

 sysfs

 Only eeprom and port_name are supported

 Other attributes are machine dependent, belong in CPLD driver

• Present, TX_Fault, RX_LOS, TX_Disable…

 Interrupts on device remove/insert – not supported

 Presence not tested, just return error (ENXIO) if no device present

 ‘Page support’ register tested if accessing beyond page 0

 I2c accesses (read/write) are copied from at24, sff8436 drivers

 Currently available on OCP/OOM github site

 Will propose for Linux mainstream when we have some adoption



© Finisar Corporation 24

SFP Memory Layout mapped to /sys/…/eeprom

A

B

C

D E F G

/sys/…/eeprom:

Linear address 

space from 0 to 

(3 + 128) * 128

A

B

C

D

E

F

G



© Finisar Corporation 25

QSFP EEPROM mapped to /sys/…/eeprom

A

B C D E F
‘F’ here is architected, 

but not part of the 

standard

/sys/…/eeprom:

Linear address 

space from 0 to 

(1 + 128) * 128

A

B

C

D

E

F



© Finisar Corporation 26

Feedback from August OCP Networking Workshop (todo list!)

 Explore getting OOM into Redfish, OOM Networks profile for Redfish?

 Some choices for protocols to expose the data
 Collectd, grafana…

 Redfish

 GRPC

 Make a publicly available (github) demo – flashy, GUI, etc

 Dustin suggests put it into the Linux upstream

 Config is either the platform driver or an ACPI table, or the device tree (Dustin)

 ~10 folks would be willing to help out in bi-weekly conference calls to develop/deploy 
the driver

 Collect more use cases – what specific uses are being made of this optics data.  
Agenda item for the ongoing process.
 Link budget  - dbm sent, received, fiber loss, dust, …  MUCH easier with T2DOC to ask just 

one side for the data from both

 Inventory, including statistics of new device, to compare with current values

 Energy consumption for the switch, turn off laser on unused links

 Sysfs attribute – put the device in low power mode



© Finisar Corporation 27

OOM was kicked off by the OCP 

Networking group in October 

2015… To address problems with 

consistent access to EEPROM 

information on optical transceivers 

during OCP Interop testing.

Sponsors:

Accton/Edgecore

Big Switch Networks

Broadcom

Cumulus Networks

Finisar

Open Optics Monitoring and Control (OOM)

Switch Silicon

Installer
(eg ONIE)

Forwarding SW
(Traditional, Distributed, 
eg OSPF, BGP, STP etc)

Forwarding SW
(Centralized, eg OpenFlow)

Monitoring
Config &

Automate
QoS Security Other

Switch Abstraction Interface (SAI)

APPLICATIONS
API to 

Network 

Applications

Interface to

Transceiver Module

Network OS Decode



© Finisar Corporation 28

Simplified OOM Architecture

Network OS
(Kernel)

i2c (HW)

OOM Decode Library

Network OS (including apps)

Network
Agent

Real time 
Optical 
Control

Switch 
Mgmt

Interface

Open 
Mgmt

Interface

Switch

Open Source Vendor Specific

Drivers, etc.



© Finisar Corporation 29

Inventory with OOM

Record identifying info from all modules on the switch 

Confirm intended vs actual parts

Key Messages

from oom import *
for port in oom_get_portlist(): # enumerate the ports on the switch

inventory  = oom_get_memory(port, ‘SERIAL_ID’)  # SERIAL_ID: 23 identifying keys
add_record(port, inventory)                     # add this module to the database
audit_record(port, inventory)                   # check for compliance



© Finisar Corporation 30

Health Monitoring with OOM

Monitor and display key health metrics Key Messages

from oom import *
list = oom_get_portlist(): # enumerate the ports on the switch

health  = oom_get_memory(list[53], ‘DOM’)  # DOM: Digital Optical Monitoring
show_port(list[53], health)                            # Display temp, voltage, laser, Rx/Tx power 



© Finisar Corporation 31

Diagnostics and Support with OOM

Vendor rep adjusts low_temp warning threshold to test alert handling

from oom import *
list = oom_get_portlist(): # enumerate the ports on the switch

oom_set_keyvalue(list[53], ‘PASSWORD_ENTRY’, secret)  # Vendor support password
oom_set_keyvalue(list[53], ‘TEMP_HIGH_ALARM’, 45.0)  # Change threshold

O
ld

 V
al

u
es

N
ew

 V
alu

es



© Finisar Corporation 32

Custom Uses - Vendor Value Added Content with OOM

Trigger flashing pull tab lights with OOM

Easy documented process to add additional keys to OOM

In the switch, live, running normal production workloads

from oom import *
list = oom_get_portlist(): # enumerate the ports on the switch

oom_set_keyvalue(list[53], ‘TAB_LIGHTS’, flash)  # Make the lights flash



© Finisar Corporation 33

OCP SUMMIT: Interoperability and Open APIs

Key Messages

 Message 1

 Message 2

 Message 3

OOM demonstrated at 

OCP Summit 2016, 2017, 2018



© Finisar Corporation 34

How can you Access & Participate in OOM?

Key Messages

 Message 1

 Message 2

 Message 3

Key Messages

 Message 1

 Message 2

 Message 3

• OOM is now an OCP Accepted™ Project

• Download, use and improve!

• https://github.com/opencomputeproject/oom

• https://youtu.be/kkL2dk7zMOc

• Share your use-cases with us.

• Used in Interoperability testing at UNH IOL Plugfests.

• Demonstrated in numerous Linux-based NOSs, white 
box switches, evaluation boards and a module 
simulator.

• 200+ keys decoded for QSFP+, QSFP28, SFP+… 
CFPx limited keys available.

https://github.com/opencomputeproject/oom
https://youtu.be/kkL2dk7zMOc


© Finisar Corporation 35

Latest OOM News

• February 2017 – ‘Universal Python Shim’.

• No longer need to compile C code to install OOM.

• Extensible to support any (every) Linux-based NOS.

• July 2017 – Introduced CFP family support in OOM.

• October 2017 – ‘optoe’ driver released for transceiver EEPROM.

• For any Linux-based NOS.

• Accesses more transceiver EEPROM capabilities than existing drivers.

• January 2018 – ‘optoe’ driver is in Open Network Linux (ONL) for 5 Accton 
switches and one Quanta switch. We expect additional switches and NOS 
vendors soon.



© Finisar Corporation 36

Latest OOM News

• May 2016 – OOM installs as a standard Python Package

• August 2016 – OOM Web Service using JSON available

• September 2016 – ‘Universal Shim’ developed (Cumulus + ONL)

• February 2017 – ‘Universal Python Shim’

• No longer need to compile C code to install OOM

• Extensible to support any (every) Linux-based NOS

• August 2017 – Reference Linux Kernel Driver available on github


