

March 20-21 2018SUMMIT San Jose, CA

SK Telecom: A Shareable DAS Pool using a Low Latency NVMe Array

Eric Chang / Program Manager / SK Telecom

OPEN. FOR BUSINESS.

Before We Begin...

• SKT NV-Array (NVMe JBOF) has been evolving..

OCP US Summit 17

D20: 1U20

NV-Array Demands and Basic Architecture

Increasing Demands for Efficient Infrastructure

- Advanced applications, with significant resource requirements, are becoming ready for deployment:
 - UHD video streaming requires double the bandwidth of full HD (20Mbps*20K users = 400Gbps)
 - Virtual/augmented Reality based services will evolve to beyond 4K (i.e. 8K to 12K) 360-degree res.
 - 5G wireless communications needs 1/10 latency compared to 4G LTE

- Composable infrastructures are emerging in order to maximize the utilization of these resources: - Dynamic reconfiguration of compute, storage and networking allows for the optimal combination of hardware for a specific application

Storage with large capacity, low latency, high bandwidth and composability is a key component of the recently required infrastructure

E2E	Latency < 5 ms	
	50 ms	4G
5 ms 5G	A Tenth of E2E Later	ncy
A	E2	E Latency
Air	Latency < 1 ms	
10 ms 4G		
ms 5G	A Tenth of Air Laten	су
	A	ir Latency

What else required for 5G?

le	CC	m

NV-Array Architecture At a Glance

- The NV-Array is designed for high availability, with redundant PCIe switch boards
 - 24 dual port NVMe SSD slots
 - Base Management Controller with Redfish and IPMI —
 - 10 Upstream (Host) Ports
- The Host Bus Adaptor provides PCIe cable connectivity to the NV-Array (on COTS servers)
 - PCIe x8 and x16 host slot options
 - A single HBA can provide two cables to the NV-Array for HA support

rr	\mathbf{n}
	/

NV-Array Used as A DAS pool

• SKT's software stack allows data stored in the NV-Array to be shared among multiple host servers.

access to SSDs

OPEN. FOR BUSINESS.

Key Features and Progress

Data Sharing – SKT Driver and GFS2 (Distributed FS)

- SKT software makes the NV-Array into a shareable DAS pool by:
 - Enabling data sharing among hosts connected to the NV-Array (NTB and GFS2)
 - Managing failover and hardware resources by health monitoring
 - Enhancing storage performance by distributing data traffic between 10 host connections

SKT NV-Array Device Driver (NDD)

- The NDD is a key enabler for SKT's NVMe based shareable storage system
 - Transparent Bridge functions of the PCIe fabric

- It enables the connection of multiple NVMe SSDs to multiple host servers using the Non

(Source: http://brasstacksblog.typepad.com/brass-tacks/2017/11/storage-protocol-stacks-for-nvme.html)

Reliability - PCIe Hot-Plugging

- The ability to reliably add and remove NVMe SSDs is essential for high availability systems
 - In PCIe terminology, these SSDs must be "hot-pluggable" and the overall system must support "hot-plug"
- The reliable operation of hot-plug work relies on the coordinated interaction between a number of system elements:
 - The system BIOS must support correct system resource allocation for the SSDs, before and after a hot-plug event
 - The Linux kernel must include the proper drivers to support hot-plug, and PCIe error containment and recovery (especially Downstream Port Containment - **DPC**)
 - The kernel must be correctly configured to allow the BIOS and drivers to work together properly

PCIe Hot-plugging creates dependencies between hardware, BIOS, and kernel versions

le	C	0	r	n

Performance - NVMe Multi-path Active/Active Implementation

- SKT improves NVMe multi-path productivity by enabling round-robin path selection
- Dual port NVMe SSD are used in active-active mode rather than active-standby, significantly improving performance

Performance Comparison

- - Some vendor's SSDs are not optimally designed for active-active use

• SKT's active/active implementation has made apparent significant performance variations between SSDs

HP DL180 - E5-2660, 128GB memory Linux 4.15.2, Fio-3.2

NVMe Multi-path Reliability Improvement

- SKT has repaired a problem in the current NVME Linux multipath driver:
 - When multipathing is enabled, each NVMe subsystem creates a head namespace (e.g., nvmeon1) and multiple hidden namespaces (e.g., nvmeocon1 and nvmeoc1n1) in sysfs.
 - When links for hidden namespaces are created while head namespace are used, the namespace creation order must be followed as head namespace and hidden namespace (e.g. nvmeon1 -> nvmeoc1n1)
 - If the order is not kept, links of sysfs will be incomplete or kernel panic will occur.

Commit link: https://github.com/torvalds/linux/commit/9bd82b1a4418d9b7db000bf557ed608f2872b7c9

le	CO	m

Composability - Redfish

- To maximize datacenter efficiency, there is a need to dynamically join disaggregated hardware into complet systems
 - This "composed" system contains the optimal compute memory, I/O and storage capabilities for a particular wo
 - Resources can be added and removed without physical interaction with the hardware
- Redfish Composability provides a standard method to manage composed systems
- The Redfish specifications provide data models for composable hardware, and define an interface to manage thei composition/decomposition
- A client communicates with a Redfish server using a RESTful interface over HTTPS
 - Data is in JSON format based on OData v4
- Based upon the client's request, the server will alter the hardware's state (routing paths, stored parameters, etc.) to adjust the composition

SKT NV-Array supports Redfish for NVMe storage composability

Note) SKT's other EW session talks about the composability and manageability of system resources in Telco infrastructure - Hardware Monitoring and Management System for Telco Data Center (Jungsoo Kim)

te e, orkload. I	Operating Expense	Traditional Infrastructure	Integrated Infrastructure	Composable Infrastr
		Static	Flexibility	

lecom
ucture
mbled
-> Dynamic
ir

OPEN. FOR BUSINESS.

Target Apps and Test Results

Target Applications

- High res (i.e. 4K UHD) media streaming / video editing
 - UHD media editing requires 4x the I/O resources of FHD
 - Using the NV-Array dramatically reduces this time consuming process
 - The gains are even larger for Augmented/Virtual Reality infrastructures, with resolutions of 8k or more
- Virtual desktop infrastructure Bandwidth Latency - Deduplication for VDI can be achieved by NV-Array using sharing capability • Real time data analytics Latency Capacity - Allows in-memory stream processing to be moved to flash, greatly improving capacity Al and Deep learning infrastructures Bandwidth Capacity Distributed filesystem clusters can be accelerated with the NV-Array — • 5G infrastructures Latency Capacity - Provides massive, low latency messaging for the network core as well as the billing system

Capacity

Bandwidth

Infrastructure System Comparison (NVMe JBOF vs. NVMeOF)

NV-Array based Composable/Converged infrastructure

• NV-Array based infrastructure system can cover up to hundreds of TB as NVMe SSD capacity scales

For mid-scale infrastructures, the system with NV-Array will be more cost-effective

Case 1 - Content Delivery Application

• Test Environment

- 32 client servers (320Gbps load)
- 8 Host nodes + NV-Array (24 NVMe SSDs)
- Results
 - Using the JMeter test tool, the NV-Array system saturated the network bandwidth of **320Gbps**
 - An All-Flash NAS system provided only 50Gbps

Case 2 - VDI Application

- One NV-Array supports up to ten host servers and one thousand VMs (VDI users) - Each user is allocated 2K IOPS (3R:7W mix workload)
- The NV-Array IO bandwidth is so high that that user productivity is constrained by CPU performance
 - Service providers can select the appropriate CPU depending on the end user requirements

Note) if raw images are used (relieving CPU bottlenecks), it is expected to provide over 1GBbs/server

le	CO	m

Future Work

- NV-Array will be more stable and reliable through testing and real deployment in 2018.
- SKT will keep sharing the experience and identified requirement while verifying PCIe hot-plugging, and contribute NVMe Multi-path driver improvement.

- SKT has a plan to share NV-Array spec and design in OCP around Q4'18.
 - SKT has shared the 'AF-Media' hardware design in 2016 and we now offer NV-Array to provide the next-level performance and efficiency by coupling with COTS servers for applications that used 'AF-Media'.

le	С	0	r	n

Summary

OPEN. FOR BUSINESS.

• There are significant challenges in supporting emerging applications such as 4K UHD, VR, VxI (VDI/VSI/VMI) and 5G infrastructures. Conventional systems, and especially storage, must change to meet these challenges.

• Not only effective capacity and reliability, but low latency and composability are key factors for next generation storage systems.

• All-Flash storage is being re-defined around the advantages of NVMe SSDs. SKT's NV-Array can usher in a new era of all-Flash storage for the data center.

Other SKT Sessions

- Hardware Monitoring and Management System for Telco Data Center (Jungsoo Kim)
 - Date/Time: Wednesday March 21, 9:30am 10:00am
 - Room: 210 G
 - Engineering workshop: Telco

le	С	0	n	n

